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Thermodynamics of 
Curved Boundary Layers 
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A thermodynamic treatment of curved boundary layers is given which 
closely parallels the conventional theory of curved interfacial layers. The 
boundary analogs to the Gibbs adsorption isotherm and the Gibbs-Tolman- 
Koenig-Buff equation are derived. 
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1. I N T R O D U C T I O N  

While advances have been made in understanding the structure of bulk 
phases, knowledge of the structure of the inhomogenous regions bounding 
these phases is less satisfactory. In this paper we develop the thermodynamic 
formalism for a bulk phase bounded by a "hard  wall," i.e., a boundary 
nonattracting and perfectly repellant to molecular centers. The most direct 
applications of  this formalism are to scaled particle theory, (1,2) the subject of 
an accompanying paper. (3) 

The statistical mechanics of curved boundary layers has been treated by 
Stillinger and Cotter, <4~ and the thermodynamics by Vieceli and Reiss. (5~ The 
latter paper was aimed at the development of a formalism for boundary 
layers similar to the conventional theory for curved interfacial layers. (~ 
However, since all extensive properties of the boundary layer are proportional 
to its area, the decomposition into bulk and superficial properties is not 
unique. Thus the definition of  surface tension need not be unique. The choice 
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of surface tension made by Vieceli and Reiss ~5~ was not the most convenient 
for comparison with the interfacial case. As a result some of the advantage of 
intuition based on our experience with interfaces is lost. The present develop- 
ment is based on a choice of surface tension identical with that made for the 
interfacial case in the sense that if the boundary layer is "expanded"  into a 
second phase, our boundary tension goes smoothly into the interfacial tension. 
The new formulas are particularly useful in connection with scaled particle 
theory.~l-3~ 

2. G E N E R A L  T H E O R Y  

---f-- 
r 

Consider the system shown in Fig. 1. The solid lines represent idealized 
physical walls impermeable to the centers of  mass of  whatever particles may 
be enclosed. The dashed lines have no physical effect. Most of  the surface 
area of the system is at the outer boundary. However, if we expand both 
boundaries so as to hold constant the enclosed volume, nearly all the new 
surface area created is at the inner boundary. It  follows that superficial 
quantities at the outer boundary are large constants which, for our present 
purpose, may be ignored. 

We may write the differential of internal energy for the open system 
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Fig. 1. Model system for the thermodynamics of curved boundary layers. 
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contained within solid angle oJ and having a dividing surface at radius a as 
follows: 

where 

d E  = lz d N  + T d S  - 4 1 d V 1 -  42 d V 2  + v w a  2 d + ~ d A  (1) 

V1 = �89 3 - r~), V2 = �89 8 - a3), A = oJa 2 (2) 

and the coefficients 41, 42, v, and ~ remain to be identified. (41, 42) may  be 
identified immediately by considering Eq. (1) for  a process at constant  oJ, a, S, 
N. Then 

d V 1  = - ~ o r  ~ dr ,  d V 2  = r 2 d R  

and it follows that  (41, 42) are (P. 1, P2), the components  o f  stress normal  to 
the boundaries  at (r, R). 

To  identify v and ~, we use (2) to rewrite (1) as 

d E  = tz d N  + T d S  + oJ(Plr  2 d r  - P 2 R  2 d R )  

+ [P2 - P1 + v + (2~/a)]~oa 2 da  

+ [~a 2 - �89 3 - r 8) - � 8 9  3 - a3)] doJ (3) 

Since neither E nor  (~E/&o)~,R can depend on the location of  the dividing 
surface, we have 

0 = (~EI~a) , ,R ,~  = ( e l e a ) ( ~ E l e o O , , R  

= P 2 - P ~  + (2g/a) + v 
= P2 - P1 + (2~/a) + ~ / ~ a  (4) 

o r  

v = ~ / ~ a  = P1 - P2  - (2~/a). (5) 

Also, f rom (3) we have 

OE/Oo~ = ~a 2 - � 8 9  3 - r 3) - � 8 9  s - a 3) (6) 

The  first term in (6) is clearly a surface term, and the last two are clearly 
volume terms. This enables us to identify ~ as the surface tension 7: 

= 7 (7) 

which together  with (5) completes  the identification o f  the coefficients appear-  
ing in (1). 

(Vieceli and Reiss ~5~ found 

7vR  = ~ - [ P l ( a  3 - r3 ) /3a  2] 

The term in square brackets  has the fo rm of  an energy associated with the 
v o l u m e  V1 per unit  surface area. In  the interfacial case, for  which V1 is a 
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macroscopic volume largely filled with a homogeneous phase, it would be 
unnatural for such a term to appear in the surface tension.) 

We can now rewrite (1) as 

d E  = I~ d N  + T d S  - P I  dV1 - P2 dV2 + (7 + �89 dA - {va  3 do, (8) 

Since the variables of (8) are all proportional to the angle oJ, we may use 
Euler's theorem on homogeneous functions to find 

E = t zN + T S  - Pa Vx - P2 V2 + (7 + {va)A - �89 2 

F =  E -  T S  = I z N -  P z V I  - P2V2 + TA 
(9) 

3. G IBBS S U R F A C E  OF T E N S I O N  

The Gibbs surface o f  tension (SOT) is conventionally defined as that 
dividing surface as for which 

~_r] = v(a3 = e l  - P2 2r~ = 0 (10) 
~a ~ = % as 

The surface tension for an arbitrary dividing surface may be related to 7s, 
the surface tension at the SOT, by noting that the terms in (9) that depend 
on a must be constant: 

�89 - Px)a 3 + 7a 2 = const = �89 - P~)as 3 + 7sas 2 (11) 

Using (10) for (P2 - P~), we find 

717s = (as2/3a 2) + (2a/3as) (12) 

4. G IBBS A D S O R P T I O N  I S O T H E R M  

Suppose that R -+ ~ and that the bulk of the volume V = V1 + I12 is 
filled with homogeneous fluid with density p2 and pressure P2. As before we 
neglect all superficial quantities at the outer boundary. It is natural to define 
F, the adsorption per unit area, by 

N = p2(Vl + V~.) + FA (13) 

(Vieceli and Reiss (5) defined N = 02 Vs + PvRA.) 
Subtracting (1) in the form 

d F  = i~ d N  - S d T  - P I  dV~ - P2 dV2 + vom 2 da + 7 dA 

from the total differential of (9) gives 

F A  d~ = V~ dP1 + V2 dP2 - 02V2 dp - p2V1 dt~ - a dr  + voJa 2 da (14) 
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Using (2) and taking d T  = 0 and dP2 = P2 d/x gives the Gibbs adsorption 
isotherm 

o r  

a 8 _ r 8 

r dt* = - d y  + 3a----- T -  d ( P ,  - P2) + v da (15) 

I7 d/~ = - d y  + 3a-----y- d + v da (16) 

[For an interface we would have written (13) as N = p1V1 + p~V2 + FA, 
with pt the density of the homogeneous phase in region 1. The differential in 
the second term on the right of (15) would then have been dP~ - p~ dl~, which 
is zero by the Gibbs-Duhem relation.] 

Now consider a process for which r varies with 

T = const, t~ = const, a = as (17) 

Equation (16) becomes 

as 3 - r 8 ~ ( ~ Y s ~  ~Ys = 0 (18)  
ar as/ ar 

which is identical to the "cycle equation" 

~r(Ysa~) + 2 r  a ~ = 0  (19) 

Equations (18) and (19) may be regarded as the boundary analog to the 
Gibbs-Tolman-Koenig-Bnff equation, (m which relates the derivative of 
surface tension to the distance between the SOT and the equimolecular 
surface of an interfacial system. It is also closely related to Eq. (4.13) of 
Stillinger and Cotter. (4) 

We call (19) the "cycle equation" because it can be derived for hard 
spheres from statistical mechanics by considering a process in which a hard 
sphere fluid is expanded to infinite volume, an additional sphere placed in the 
fluid, and the system then compressed to its original volume. This derivation 
has been detailed by Tully-Smith and Reiss (v) and Vieceli and Reiss. <8) We 
note that there is an error of interpretation in Ref. 8. In Section 4 of that 
reference, the various quantities appearing as N 2 P  ~2), N22P,  ~2), etc., where p(m 
and p,(2) are "pair-specific" distribution functions, should be replaced by the 
appropriate "generic" two-particle density functions p(2) or p,(m. [The proba- 
bility of finding dr~ and dr2 jointly occupied is p<2)(rl, r2) dr~ dr2.] When (39) 
and (44) are then combined to obtain (46) there are no terms in ( N -  N2) 
other than that explicitly appearing in (44), so that the factor in parentheses 
in (46) becomes ( -1 ) .  With this correction the indicated development to 
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Eq. (48) leads to the density derivative of  our Eq. (19). So far as we are aware, 
no use has since been made of Eq. (48) of Ref. 8. 

Finally, we note that if Eq. (19) is applied to a fluid of hard spheres of  
radius ~ and integrated from ~/2 to e, the resulting equation is equivalent to 
the "integral  equation ''(1-3~ of scaled particle theory. To show this equiva- 
lence requires the use of  (10) and (16), the virial and compressibility equations 
of  state, ~a~ and the identification of the scaled particle function G()~) as P1/p 

for a boundary of radius ;~. 

5. S U M M A R Y  

We have developed the theory of curved boundary layers in close analogy 
with the conventional theory of curved interfaces. The two main results are 
the Gibbs adsorption isotherm (15) and (16) and the "cycle equation" (19). 
In an accompanying paper (a~ we apply these results to scaled particle theory. 
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